Second-harmonic interference imaging of ferroelectric domains through a scanning microscope

To cite this article: Xiaoyang Huang et al 2017 J. Phys. D: Appl. Phys. 50 485105

View the article online for updates and enhancements.
Second-harmonic interference imaging of ferroelectric domains through a scanning microscope

Xiaoyang Huang\(^1\), Dunzhao Wei\(^1\), Yongmei Wang\(^1\), Yunzhi Zhu\(^1\), Yong Zhang\(^{1,\ast}\), X P Hu\(^1\), S N Zhu\(^1\) and Min Xiao\(^{1,2}\)

\(^1\) National Laboratory of Solid State Microstructures, School of Physics, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People’s Republic of China
\(^2\) Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America

E-mail: zhangyong@nju.edu.cn (YZ) and mxiao@uark.edu (MX)

Received 22 August 2017, revised 26 September 2017
Accepted for publication 10 October 2017
Published 7 November 2017

Abstract

We report a second-harmonic (SH) interference imaging technique to observe the ferroelectric domains of a periodically poled LiTaO\(_3\) crystal through a scanning microscope. By interfering with the reference SH field, which is produced in an un-poled LiTaO\(_3\) crystal, the SH imaging of the positive and negative domains can be easily distinguished. The image quality can be tuned by rotating the reference crystal or moving the focal plane. Our SH interference configuration is compatible with commercial scanning microscopy and has potential applications in fast examination of the ferroelectric structures in waveguide, film, and integrated devices.

Keywords: second-harmonic generation, ferroelectric domains, scanning microscopy

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, increasing attention has been paid to periodically poled ferroelectric domain structures because of their attractive nonlinear optical properties. The second-order nonlinear coefficients of the inverted domains have different signs; thus, the periodical nonlinear coefficients enable quasi-phase-matching techniques for efficient frequency conversion in both one- and two-dimensional structures [1–5]. In addition, this class of materials provides more possibilities for the discovery of novel phenomena, such as conical second-harmonic generation (SHG) [6, 7], nonlinear Airy beams [8], Cerenkov second-harmonic generation [9–11], the nonlinear Talbot effect [12, 13], and superfocusing [14]. During the development of new materials, thin films of periodically inverted domains have been fabricated [15–19] that retain the ability of quasi-phase-matching of bulk structures; furthermore, as potential building blocks for integrated devices, thin films would have advantages in many applications, such as miniaturization, ease of tuning [16], and tight mode confinement [17, 18].

To monitor the poling processes and visualize the domain structures, various observation techniques for domains or domain walls have been proposed, including surface treatment [20–22], scanning electron microscopy [23], near-field scanning optical microscopy [24], scanning second-harmonic microscopy [25], electro-optic imaging [26, 27], x-ray imaging [28], and second-harmonic imaging [29]. The limitation is that these methods cannot distinguish between the antiparallel poling directions of domains noninvasively. One way to overcome this limitation is to utilize a near-field piezoelectric force microscopy, which is based on the reverse piezoelectric effect [30]. Another way is to use the far-field second-harmonic interference imaging. Under the excitation of the same fundamental field, the SH signals generated from inverted domains [25] possess different phase information because of the different signs of the second-order nonlinear coefficients. Therefore, by measuring the phase of the SH signals, the domain inversion can be observed. The phase difference of the SH can be visualized by making use of interference with an external reference field at the same frequency...
Superposed SH imaging of a periodically poled LiTaO₃ (PPLT) plate has been obtained with transmission geometry [36], and the antiparallel domains were differentiated by bright and dark interference patterns. However, it is possible that this method does not apply to thin films because these films are usually fabricated on or bonded to substrates, which may interact with the transmitted signals. For example, the substrates may be opaque or have intrinsic nonlinearity, so they can affect the interference and imaging. In this letter, we show that the interference technique can be combined with scanning microscopy, which increases the resolution and contrast of microscope image [37]. Scanning microscopy has been widely applied in life science and material science, and here we present a convenient method based on this technique for the characterization of domain structures.

2. Experiment

Our experimental setup is illustrated in figure 1(a). We utilize a mode-locked Ti:Sapphire laser (75 fs, 80 MHz) operating at a wavelength of 840 nm as the excitation source. The fundamental wave is coupled into a commercial upright laser scanning microscope and focused onto the sample by an objective lens (40×, N.A. = 0.95). The sample is mounted on the stage so that the x-y plane of the crystal is horizontal, and the linearly polarized fundamental wave propagates along the z-axis. The back-reflected and scattered SH signals are collected by the same objective. Then the fundamental wave collected together is filtered out, and the SH signals are dispersed and detected by a photomultiplier.

The sample used in our experiments is a z-cut 2D PPLT plate. Domain inversion is achieved by the conventional electric poling method. The LiTaO₃ (LT) crystal possesses 3m symmetry, and the second-order nonlinear susceptibility can be represented as

\[
\chi = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \chi_{113} & \chi_{131} & \chi_{112} & \chi_{121} \\
\chi_{211} & \chi_{222} & 0 & \chi_{223} & \chi_{232} & 0 & 0 & 0 & 0 \\
\chi_{311} & \chi_{322} & \chi_{333} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

(1)

Given the experimental setup, only the second-order nonlinear polarization in the x-y plane needs to be considered. Then, the second-order nonlinear polarization of the positive domains along the x- and y- directions can be written as

\[
P_{x,p}^{2\omega} = (\chi_{112} + \chi_{121})E_xE_y, \\
P_{y,p}^{2\omega} = \chi_{211}E_x^2 + \chi_{222}E_y^2,
\]

(2)

where \(E_x\) and \(E_y\) are the fundamental fields along the x- and y- directions, respectively. The crystal structure of the negative domain can be obtained by rotating the positive domain by 180° about the x-axis; the transformation matrix of this operation is

\[
\alpha_x = \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
\end{pmatrix}
\]

(3)

Then, the second-order susceptibility tensor of the negative domain can be derived via the transformation

\[
\chi'_{ijk} = \alpha_i \alpha_j \alpha_k \chi_{ilmn}
\]

(4)

It is easy to see that the absolute values of all the tensor components stay unchanged after the transformation, and the signs of the non-vanishing components become negative. Therefore, the relative nonlinear polarization of the negative domains can be written as

\[
P_{x,n}^{2\omega} = -\chi_{112}E_xE_y = -P_{x,p}^{2\omega}, \\
P_{y,n}^{2\omega} = -\chi_{211}E_x^2 - \chi_{222}E_y^2 = -P_{y,p}^{2\omega}
\]

(5)
and the SH signals from the positive and negative domains have a phase shift of \(\pi \) which can be observed by interference, as shown schematically in figure 1(b).

3. Results and discussion

Figure 2(a) shows a typical scanning SH image of the PPLT crystal without introducing the interference SH beam. Here, we locate the focal plane close to the upper surface of the PPLT sample. The dark triangular rings represent the domain boundaries among the antiparallel domains. The widths of the domain walls in figure 2(a) are measured to be 0.5 \(\mu \)m \(~1\ \mu \)m, which agree well with the reported values \[38\]. The second-order nonlinear coefficients in the boundaries generally become smaller because of the twisted crystal structure near the boundaries. The bright triangles and the background regions result from the positive and negative domains. The signal intensities from all of the bright areas are nearly equal because the positive and negative domains share the same absolute values of the second-order nonlinear susceptibilities, as discussed above. Also, because the Cerenkov-type SHG can be greatly enhanced by the boundaries \[29\], it can be utilized to observe the boundaries between the ferroelectric domains \[39\]. In the experiment, we increase the numerical aperture of the imaging system to collect the back-scattered Cerenkov SHG signals. As shown in figure 2(b), the bright triangular rings can be seen clearly, which result from the Cerenkov SH signals emitted at the boundaries. The areas other than the boundaries are not visualized in figure 2(b) because the Cerenkov SHG signals are quite weak in homogeneous LT domains.

To study the phase information of the SH from the sample, we introduce a reference SH wave by placing a piece of \(z \)-cut un-poled LT crystal on top of the PPLT crystal. In this geometry, the fundamental wave travels through the LT plate first and then is transmitted into the PPLT sample, as figure 1(b) shows. Both crystals generate SH waves at the same frequency, which interfere with each other \[35\]. When the crystallographic axes of the reference LT crystal coincide with that of the positive domains of the PPLT crystal, their second-order nonlinear susceptibilities can be represented by the identical matrix. Therefore, the SH waves produced from the reference crystal and the positive domains have the same phases. In this case, the positive domains are shown by constructive interference as the bright patterns in figure 3(a), while the negative domains are presented as a dark background caused by destructive interference because the corresponding SH waves have opposite phases relative to that from the reference LT crystal. The intensity pattern in figure 3(a) reflects the phases of the SH signals from various domains, which can reveal more information in comparison with the SH imaging method without the reference LT crystal \[29\] (see figure 2(a)). The interference SH image is obtained by scanning, i.e. only one point is recorded by the scanning microscopy at one time. In comparison with general interference microscopy \[36\], better resolution can be obtained. In addition, the signal-to-noise ratio can be improved because the backward signals can avoid the background SH noises in the forward direction \[25\]. The stable alternately bright and dark SH pattern indicates that the SH waves from antiparallel domains have different phases.

The image quality can be tuned by changing the relative phase between the reference wave and the SH from the sample, which can be achieved by simply rotating the reference LT plate around its \(z \)-axis by an angle of, for example, 180°. The corresponding transformation matrix is

\[
\alpha_z = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

The second-order nonlinear susceptibility tensor is transformed into

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \chi_{113} & \chi_{131} & -\chi_{112} & -\chi_{121} \\
-\chi_{211} & -\chi_{222} & 0 & \chi_{223} & \chi_{232} & 0 & 0 & 0 & 0 \\
\chi_{311} & \chi_{322} & \chi_{333} & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

and the second-order nonlinear polarization of the reference LT crystal in the \(x-y \) plane becomes

\[
P^\omega_{2,x} = -P^\omega_{2,y} = P^\omega_{2,z},
\]

\[
P^\omega_{2,y} = -P^\omega_{2,x} = P^\omega_{2,z},
\]

The phase of the reference SH wave is shifted by \(\pi \) \[35\], while the phase of the SH waves from the PPLT domains are not
Figure 3. Superposed SH images. (a) Interference pattern when the crystallographic axes of the reference LT plate coincide with that of the positive domains. (b)–(f) Patterns under the rotation of the LT plate around the z-axis by 60°, 120°, 180°, 240°, and 300°, respectively. Scale bar, 5 µm.

Figure 4. Images at different focal planes. From the left column to the right column, the focus moves deeper into the sample. (a)–(c) Superposed SH images at different focal planes when the crystallographic axes of the reference LT plate coincide with that of the positive domains. (d)–(f) Superposed SH images at different focal planes after the LT plate is rotated by 60°. (g)–(i) SH images without reference SH at various focal planes. Scale bar, 5 µm.
affected. Under this condition, positive domains are represented as dark triangles because of destructive interference, while the SH pattern from the negative domains is bright because of constructive interference (figure 3(d)). Because the z-axis of the LT crystal is a three-fold rotation axis, the same phase shift of π to the reference SH wave can be introduced by rotating the LT plate around the z-axis by an angle of 60° or 300°. As shown in figure 3, the interference patterns show positive domains when the LT crystal is rotated by 0° (figure 3(a)), 120° (figure 3(c)), and 240° (figure 3(e)), while the patterns with the reference LT crystal being rotated by 60° (figure 3(b)), 180° (figure 3(d)), and 300° (figure 3(f)) present negative domains. Therefore, the selective imaging of positive or negative domains in the sample can be easily achieved by rotating the reference LT plate.

In addition, the interference patterns also change with the location of the focal plane. By adjusting the position of the microscope stage along the z-axis, we visualize different focal planes without introducing the reference LT plate. This method can provide better understanding of the phase features of various ferroelectric domains and enriches characterization tools for nonlinear optical materials.

4. Conclusions

In summary, we have investigated the superposition of two SH waves from the PPLT and un-poled LT slices with scanning microscopy. The interference patterns show that the SH waves from inverted domains have different phases. By varying the imaging planes, the phase difference between the interfering waves can be adjusted, which results in various interference patterns. The SH interference scanning microscopy method reported in this work is suitable for the observation of thin films or the surface of domain structures. Besides the out-of-plane domains as demonstrated in our experiment, such imaging technique can be easily extended to observe the in-plane domains [18, 41] by properly choosing the reference plate. This method can provide better understanding of the phase features of various ferroelectric domains and enriches characterization tools for nonlinear optical materials.

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 91636106, 11621091, and 11674171), and the National Basic Research Program of China (No. 2016YFA0302500).

ORCID iDs

Yong Zhang https://orcid.org/0000-0003-1158-2248

References

hexagonally poled LiTaO₃ waveguide Appl. Phys. Lett. 89 171113
[20]最多引用的文献